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Relaxation of metastable states in finite mean-field kinetic 
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Federal Republic of Germany 
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Abstract. We present simulational data and a theoretical analysis of the stochastic order 
parameter relaxation in finite mean-field Ising systems. Contrary to infinite mean-field 
systems the finite ones exhibit qualitatively the same kind of relaxation as systems with 
finite interaction ranges. We explore the equivalence of different versions of the kinetic 
k ing  model in the mean-field case and study the lifetime of metastable states. We focus 
on the vicinity of the mean-field spinodal and present a phenomenological finite-size-scaling 
theory for the lifetime of the metastable state. 

1. Introduction 

The kinetics of first-order phase transitions as an example of the statistical mechanics 
of systems far from equilibrium still pose a lot of fundamental problems (Binder 1987, 
Gunton et a1 1983, Klein and Unger 1983, Metiu et a1 1979, Penrose and Lebowitz 
1979). There are some phenomenological theories that can be dealt with in approxima- 
tions, In the unstable region, time-dependent Ginzburg-Landau theory for non- 
conserved order parameter or Cahn-Hilliard-Cook theory for conserved one, for 
example, or close to the coexistence curve for instance, the Becker-Doring theory of 
nucleation. On the other hand, there are simulational studies of model systems where 
the simulated evolution equation is valid in the metastable and the unstable region, 
molecular dynamics studies of Lennard-Jones systems (Abraham et al 1982) or Monte 
Carlo studies of lattice spin systems (Binder 1979). Most prominent among the last 
are the kinetic Ising models first studied by Glauber (1963). The critical dynamics of 
these systems in the mean-field approximation was analysed by Suzuki (Suzuki and 
Kubo 1968). We want to look at the mean-field version of these models with a focus 
on the properties of the stochastic process these models generate on the global 
magnetisation per spin of the system, and to understand the relaxation of the magnetisa- 
tion far from equilibrium. Specifically we consider processes where we prepare a 
system with all spins down (external field is minus infinity) and then reverse the external 
field to some positive value (see figure 1). We thereby force the system to relax into 
equilibrium by passing an intermediate metastable state. Figure 2 shows a qualitative 
sketch of the generalised free energyf,,(m) along the broken path in figure 1. Section 
2 gives the general theoretical framework for the analysis of this process. In 0 3 we 
explore the question of equivalence between different versions of kinetic Ising models, 
0 4 presents numerical data on the system size dependence of the stochastic properties 
and in 0 5 we give our conclusions. 

0305-4470/89/163325 + 13%02.50 0 1989 IOP Publishing Ltd 3325 
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I '  

Figure 1. Mean-field equation of state mT( H) for a ferromagnet below the Curie tem- 
perature and the kind of relaxation paths we want to analyse. 

Figure 2. Qualitative sketch of the generalised free energy for T <  T, and external field 
O < H < H , , .  

2. The stochastic mean-field system 

Let us consider spin systems described by the equivalent neighbour Ising Hamiltonian 
with ferromagnetic coupling (Domb and Dalton 1966, Griffiths et a1 1966, Heermann 
et a1 1982) 

6 

i = l  j e n ( i )  i = I  i = l  4 

N N N 

X(SI,...,SN)=-J~ Si Sj -ppH Si=: 1 S i E i  Jq := - Jlsing > 0 (1) 

where n( i) is the set of spins interacting with spin i and q is the number of these spins. 
The corresponding kinetic Ising models for single spin flip are given by a microscopic 
master equation on the states ( s l , .  . . , s N )  of the system: 
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with the condition of detailed balance imposed on the transition rates: 
w(sj+-sj)peq(sI,. . . , s N ,  I ! ) =  w(-sj+sj)p,q(s1,. . . , - s j , . .  . , S N ,  t ) .  

(3) 
Two frequently used kinetic Ising models are given by the transition rates: 

1 
27 
1 

WG(sj, E,) = - ( 1  - tanh(psjEj)) Glauber (4a )  

i4b)  WM( s,, E j )  = - min( 1, exp{ -2Ps jEj} )  Metropolis 
7 

where p = l / k B T  and 7 is a constant setting the time scale; s, and Ej denoting spin 
and local field before the spin flip. In the mean-field system the set n ( i )  of spins 
interacting with spin i is given by all the other spins of the lattice so that 

Using Sm = -2sj/ N one can rewrite the transition probabilities as 
sj E T f  = ( J N  - N m  + @H) s, - .IN - . ( 5 )  

m&n+fhNSm+- - 

mSm+$hNSm+2-- 

27 T N - 1  

T N - 1  
with the abbreviations 

k ,  T, = J N  - 1 ( N - 1 ) 

Summing (2) over all states {s} to fixed magnetisation per spin m and using ( 6 ) ,  one 
now easily derives 

a N 
at 2 

r - P ( m ,  t ) = - - [ g ( m ) + r ( m ) ] P ( m ,  

with 

Rewriting (8) as 
a 

7- P (  m, t )  = ( E  - l ) r ( m ) P ( m ,  t )  + ( E - '  - l ) g (  m ) P (  m, t )  (8') at 
where 

translation by 2/ N ( l o a )  

2 a  
E - ' =  exp( -- N -) am translation by - 2 / N  ( l o b )  
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and using the Kramers-Moyal expansion (the jump distance 2/ N is the parameter), 
one arrives at the diffusion approximation to the one-step-process master equation (8): 

a a 1 a’ 
a t  am 2 a m  7 - P ( m ,  t ) = - - [ D l ( m ) P ( m ,  r ) ] + - y [ D 2 ( m ) P ( m ,  t ) ] ,  

We will confine ourselves to the standard Kramers-Moyal expansion but for a quantita- 
tive comparison of the descriptions based on the master equation and Fokker-Planck 
equation respectively it would be worthwhile to exploit the consequences of a refined 
approximation to the master equation (Hanggi er a1 1984). 

The drift coefficient in (11) is given by 
D,(m)  = g ( m )  - r( m )  =: - U ’ ( m )  ( 1 2 a )  

defining the drift potential U(m). The diffusion coefficient is 

(12b) 
2 

D 2 (  m ) = [ g  ( 1 + r( 1 1 .  

In the thermodynamic limit the diffusion coefficient vanishes and the evolution of the 
order parameter (derivable from (8) or equivalently from (1 1)) 

a 
a t  

7- (m) = -( U’( m)) (13) 

becomes deterministic 
a 

a t  
T -  (m) = - U’(( m)) .  

The master equation (8) also offers a way to calculate the lifetime of metastable states. 
Imagine a system starting in or close to a metastable state. One would say that the 
system is still in this metastable state as long as it stays in its basin of attraction, and 
that the metastable state has decayed when the system has crossed the barrier to another 
metastable or to the stable state. Clearly this is a question of mean first passage times 
and for the given one-step process (8) these can be calculated as (Weiss 1967, Gillespie 
1981, Seshadri et a1 1980, van Kampen 1981) 

2 m - 2 : N  

m ’ = m o  Ng(m’)Peq(m‘)  x = - i  
T,(mo-+m)= c 2 Peq(X). (15) 

Here Peq( m) denotes the equilibrium distribution for the grand canonical ensemble. 
In the following chapter we will explore the implications of equations (8)-(15). 

3. Equivalence of kinetic Ising models 

In spite of the fact that we can only treat the mean-field case analytically, we think 
that some of our conclusions will qualitatively also hold for medium range interaction 
models (Paul er al 1989). 

3.1. Static properties 

For the mean-field system the partition function 
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can be partially summed to yield: 

Z =c exp{-PNf(m)) 
m 

with 

3329 

(17') 

and 

# ( m )  is the number of states for a given magnetisation m and f (  m )  is the so-called 
generalised free energy. The function f( m )  for temperatures below the critical tem- 
perature has the well known double well shape with (for positive H) a metastable 
minimum at mmet < 0, an unstable maximum at muns < 0 and a stable equilibrium state 
at m e q s  1. The thermodynamic properties of the system as well as the quasistatic 
'thermodynamic' properties of the metastable state depend only on the location of the 
stable, respectively metastable, minimum as a function of T and H. Here we anticipate 
that this conclusion is corroborated from studying the kinetic properties as well. A 
treatment of the master equation yields these positions as the locations of the corre- 
sponding minima in the respective drift potentials. In the thermodynamic limit these 
are for the two choices ( 4 a )  and (4b) 

T 
2 TC 

m < - - h  

where h = 2 P p B H  will be used henceforth as a dimensionless parameter. Figures 3 
and 4 show the drift potentials and the generalised free energy (also taken in the 
thermodynamic limit) for a temperature T = %T, and h = ih , ,  and h slightly exceeding 

0.8 

v1 - 
.E! 0.6 c 
c al 
c 

a 
* 0.4 
c - 
& 

0.2 

0 
-0.8 - 0  4 0 0.4 0.8 

m 

Figure 3. Kinetic potentials and generalised free energy for T = $ T c  and h =fh,,. 
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-0.8 -0.4 0 0.4 0.8 
m 

Figure 4. Kinetic potentials and generalised free energy for T = $ T ,  and h = 1.007 h,p. 

the spinodal field respectively. The spinodal value of the magnetic field is defined as 
the value where the potentials change from a double well to a single well structure, 
that is where the metastable minimum and the barrier combine to form a saddle point. 
In spite of the apparent differences between the three functions, all give the same 
condition for the location of their extrema and are thus equivalent regarding the 
thermodynamic properties. The behaviour of the three potentials around the stable 
equilibrium well that lies very close to m = 1 is shown in detail in figure 5 .  The h 
dependence of the location of the metastable minimum and the barrier are shown in 
figure 6. Both curves end at the spinodal field h,,  = 1.429 25 separating the metastable 
from the unstable region. 

3.2. Kinetic properties 

The first thing to note is that according to equation (13) or (14) the evolution of the 
order parameter is not given by amlat - a f / a m  as usually assumed. This is a con- 
sequence of the magnetisation dependence of the diffusion which always leads to a 
difference between the potential governing the statics, f (  m ) ,  and the potential governing 
the kinetics, U , ( m )  or & ( m )  (van Kampen 1981). This remains true for a field 
theoretic Ginsburg-Landau-like treatment of the inhomogeneous system (Paul 1988). 
A relation amlat  - af lam is only found to leading order for T + T,, as will be discussed 
in detail below. 

0.992 0 996 1.000 
m 

Figure 5. Behaviour of the different potentials near the stable minimum. 
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0 OL 0.8 1.2 1.6 

h 

Figure 6. Location of the metastable minimum (full curve) and the barrier (broken curve) 
as a function of the applied field h for T=$T, .  

Furthermore the qualitative features of a diffusion process in a double well potential 
will be the same for both choices of transition probabilities, whereas quantities depend- 
ing on the global form of the drift potential will differ. One such quantity is the mean 
first passage time from the metastable to the stable region, which is a measure for the 
lifetime of the metastable state. As long as the lifetime of the metastable state is large 
compared with the equilibrium relaxation times, the mean first passage times will not 
sensitively depend on where exactly in the metastable well the system starts. Figure 
7 shows the mean first passage time to magnetisations m E [-1,1] starting from m, = -1. 
The MC data were obtained by simulating equation (8) with Metropolis transition rates 
and the curves by evaluating (15)  for the two choices (4a) and (4b). The MC data 
were obtained for a magnetic field slightly larger than the spinodal field in order to 
get the whole relaxation process into the time window of the first 100 Monte Carlo 
steps. But as the transition across the spinodal field is absolutely continuous for finite 
mean-field systems, the shape of the curve is the same as in the metastable region. 
Thus the lifetime of the metastable state would be definable as the height of the plateau 
in the mean first passage time curves and clearly depends on the version of the kinetic 
Ising model that one chooses. Quantities depending only on the local structure, 
however, are not sensitive to the chosen model. Such quantities are obtainable by an 
expansion of the drift potentials around a given value f i , for example rii = mSt or 

F 

-!. 20 
LT 

10 

0 

m 

Figure 7. Model dependence of the mean first passage time (for explanations, see text): 
0, MC data; -, Metropolis; ---, Glauber. 
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f i  = mmet and linear response theory, or f i  = 0 and critical dynamics. For linear response 
theory this is trivial because the extrema of the drift potentials agree and all differences 
can be absorbed in the time scale. (For an analysis of the Ising case see Miiller- 
Krumbhaar and Binder (1973).) Near T, one arrives at the Landau theory by expanding 
f ( m )  up to order m4. Since in Landau theory meq - (1 - (T/  TC))”* and one is only 
interested in a region of the size of the double well structure, this amounts to an 
expansion up to order (1 - ( T / T , ) ) ’ .  In order to retain the double well shape the 
external magnetic field has to be smaller than the spinodal field given by 

1 - ( I  - ( T /  T , ) )  1/2 h =2-  1-- 
sp “ (  T ;) + I n  l+ ( l - (T /Tc) )1 /2  

or for T -  T, 

Thus mh is of the order (1 - ( T /  T,))’ and all higher terms have to be discarded in the 
expansions. For the three potentials one obtains 

So the free energy and the Glauber transition rate yield the same driving potential 
near T,,  whereas the Metropolis transition rate leads to a rescaling of the timescale 
by a factor of 2. 

4. Relaxation in finite mean-field systems 

If not stated explicitly otherwise, the following data were obtained by a Monte Carlo 
simulation of equation (8). 

4.1. The non-linear relaxation function and recrossing events 

The non-linear relaxation function is defined (Binder 1973) as 

m ( t )  - m ( a )  
m ( 0 ) -  m(co)‘ 

q5( t )  := 

Figure 8 shows this function for a few selected linear system sizes L = The full 
curve is an integration of equation (14). The plateau that the relaxation function 
develops for linear system size L +  CO can be regarded as a precursor of metastability. 
In fact, the length of such a plateau is one of the possible ways to define the lifetime 
of a metastable state in finite systems (Binder 1973). As one approaches the thermo- 
dynamic limit the plateau gets longer and the relaxation down from the plateau gets 
steeper. Both effects arise from the same origin. With increasing system size the 
probability for fluctuations around the mean path decreases so that there are less large 
fluctuations driving the system quickly across the flat part in the drift potential (see 
figure 4) or holding it back on the plateau against the drift. A sensitive measure for 
this vanishing of stochasticity as well as for the occurrence and position of metastable 
states are the recrossing events (see Paul and Heermann (1988) for a discussion of the 
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t ( Y C S I  

Figure 8. The non-linear relaxation function for a few selected system sizes. Values of L 
are: 40(Y), 2 1 ( ~ ) ,  17('?), 13(x) ,  9(A).  Full curve, L + a .  Time is measured in Monte 
Carlo steps per site (MCS).  

recrossing events in connection with systems with a finite interaction range). If one 
imagines some oscillatory relaxation path, the system crosses any fixed magnetisation 
for several times in the positive as well as the negative direction. The first passage in 
the positive direction defines a first passage time and each pair of crossing in the 
negative direction and return crossing in the positive direction defines a recrossing 
event. Figure 9 shows the distribution of the recrossing events as a function of the 
magnetisation. We consider the peak position as a good criterion to define where a 
metastable state occurs. The peak height decreases as the relaxation gets more and 
more deterministic as one approaches the thermodynamic limit. Furthermore, the shift 
in the peak position indicates a finite-size effect in the drift potential. 

4.2. The mean first passage time 

For fixed h > h,, the mean first passage time approaches a limiting curve for L + 0;) 

(see figure 10). This curve is most conveniently found from the fact that the relaxation 
becomes deterministic. Equation (14) then directly yields 

m 

Figure 9. Distribution of the recrossing events for a few selected system sizes. Values of 
L are: 9 ( 0 ) ,  13(A), 17(+), 21(x) ,  40(0). 
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1 
-0.8 -0.4 0 0.4 0 8 

m 

Figure 10. Monte Carlo results for the mean first passage time at h = 1.007 h,, for a few 
selected system sizes. Symbols as in figure 8 .  

(simply look at the full curve in figure 8 from the left.) 
The lifetime of the metastable state can be defined as the height of the plateau. 
Figure 11 shows the mean first passage time for a system set up with m, = -1 to 

reach m = 0 as a function of the applied magnetic field for various system sizes. The 
data are the evaluation of equation (15) which for finite system size gives a continuous 
function across the spinodal field. In the thermodynamic limit the behaviour of the 
mean first passage time differs in the metastable and the unstable region. In the 
metastable region, h < hsp, the generalised free energy has a double well shape, i.e. it 
is not a monotonically decreasing function of the magnetisation. If one writes out 
(15) more explicitly 

one sees that there appear terms proportional to exp{PN[f( m') -f( x)]}. 
As soon as m lies to the right of mmet,f( m') -f(x) is positive for some m' and the 

mean first passage time diverges exponentially. If m lies in the stable well one sees 
that the lifetime of the metastable state will be asymptotically proportional to the 
dominant term, that is 

~ ~ e x P { P N f ( " )  - (mnleJI1. ( 2 5 )  

1000 

;; 100 
I 

c: 
7 - 

10 

1 
1.4 1.5 1.6 

h 

Figure 11. Finite-size dependence of the lifetime of the metastable state as a function o f  
the applied field. Values of N are: lOOO(O), 800(A), 700(+), 500(x), 200(0), loo(?). 
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Here we recover a finding of Griffiths et a1 (1966) for the relaxation of metastable 
states in a mean-field kinetic Ising model. One would get the same expression out of 
thermodynamic fluctuation theory (Becker and Doring 1935) or transition state theory 
(see for instance Kramers 1940) if one assumed f(m,,,) and f(m,,,) to be the free 
energies of thermodynamically stable states. On the unstable side one encounters a 
critical divergence of the relaxation time as T K ( h  -hsp)-1’2 if one approaches the 
spinodal (Binder 1973). 

4.3. Finite-size scaling of the relaxation near mean-field spinodals 

We found that in the metastable region the relaxation time behaved asymptotically as 
T=exp{NAf}; A.7 = p [  f(m,,,) -f(mmet)] =f(m,,,) - f (mmet) .  In order to understand 
this finite-size effect near the spinodal more precisely, we need to study how Af varies 
with h,, - h. For this purpose we note that in the thermodynamic limit the generalised 
free energy can be written as follows: 

l + m  l + m  1 - m  1 - m  ?( m )  = - In (7) +T in( 7) -L T. m 2  - mh. 
2 2 T  

Now the extrema in figure 4 are found from f’( m )  = 5 In( 1 + m )  -4 In( 1 - m )  - 
m (  Tc/ T )  - h = 0.  Solving this equation and inserting the two relevant solutions into 
the above free energy expression, Af follows. We want to solve this problem in the 
vicinity of the spinodal only. The spinodal is found from 

f y m )  =- -+- - -Lo 
2 1 + m  2 1 - m  T 

TC h,, = 4 In( 1 + mSp) -f In( 1 - msp) - mSp - T‘ 
Writing then m = mSp + x 

x 1 x2  
In( 1 + m )  = In( 1 + msp) +--- 

1 + m,, 2 ( I  + m,,)’ 
x 1 x 2  

l - m s p  2 (1-msp)2  
ln(1- m )  = In( 1 - mSp) 

we find 

T 
TC 

2 

h - h , , = x 2 ( + )  msp x =  *-v‘J(h,,- h ) / ~ m s p ~  

and 

(hsp-h)3’21mspl-1’2. 

Thus we conclude that the relaxation time behaves asymptotically as 

T cc exp{ N A f }  = exp 
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The combination of N and h,,- h that describes the finite-size rounding of the 
relaxation time on the metastable side of the spinodal is hence given by N (  h,, - h ) 3 / 2 .  

We now make the assumption that an analogous combination also enters on the 
unstable side of the transition, and thus write down the scaling ansatz 

7 ( h ,  N ) = ( h - h s , ) - ” 2 i ( N ( h  -hsp)3/2).  (29) 

The requirement that at h = h,, the singular factor ( h  - hsp)-’j2 cancels out means that 
the scaling function i(/) for small arguments .g must behave as ; ( g ) C c ~ ’ / ~  and hence 
we predict 

T (  hspr N )  - N’/3.  (30) 

One can test this scaling theory by analysing (15 )  near h = hsp.  In figure 12 we plot 
the scaling function T (  h, N)lh  - h,,l against N Ih - hSp13/2. The straight line indicates 
a slope of $. In the plotted range of magnetic field values h = 1.429-1.43 with A s p =  
1.429 25 at T/ T, = $ we find perfect agreement with the predicted scaling. 

I 
0.005 0.01 0.02 0.0001 0 0002 0 0005 0.001 0.002 

N I h -hrpl 

Figure 12. Finite-size-scaling plot of the lifetime of the metastable state near the spinodal. 
Symbols as in figure 1 1 .  

5. Conclusions 

We have analysed the mean-field theory for the kinetics of first-order phase transitions 
in the kinetic Ising model. The version of the kinetic Ising model used, as specified 
by the transition rates chosen in the master equation, influences quantities depending 
on the global properties of the drift potentials that are derivable from the transition 
rates. One such quantity is the lifetime of the metastable state that can be defined as 
the mean first passage time from the metastable well of the drift potential to the stable 
one. The different versions of the kinetic Ising model are equivalent regarding localised 
relaxation processes as those encountered in linear response theory or critical dynamics. 
All differences can be absorbed in the timescale. Finally we presented a finite-size- 
scaling theory for the lifetime of the metastable state in the vicinity of the mean-field 
spinodal, where a critical divergence occurs. This phenomenological finite-size-scaling 
theory is confirmed by our numerical calculations. 
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We believe that the fact that quantities like the lifetime of the metastable state that 
depend on global properties of the diffusion process will be influenced by the choice 
of transition rates should carry over to the kinetic Ising model with short- or medium- 
range interactions. These systems will be analysed elsewhere (Paul et a1 1989). 
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